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ABSTRACT

In this dissertation we review the basic concepts of supersymmetry-a
symmetry between bosons and fermions. In this context we also have briefly
reviewed Standard Model (SM) and Grand Unified Theories (GUTs).
Supersymmetry algebra and supersymmetric extension of Standard Model has
been discussed in a bit detail. We also give a brief account of super GUTs and
supergravity (SUGRA).
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INTRODUCTION

In 1970s, particle physics came across a revolution with the experimental
confirmation of Glashow-Weinberg-Salam theory of electroweak interactions,
which when combined with the Quantum Chromodynamics, is called the
Standard Model. Till this day hundélfds of experiments have been performed and
the experimental data is remarkably in agreement with predictions of this model,
up to the energies of the order of 100 GeV or so. But is that all 2 What about
grand unification and above all unification of gravity with other forces ? What
shape does physics take at arbitrarily large energy scales like 10719 GeV ? These
and many other questions suggest that we have to go beyond the standard
Model.

There are many theories which are designed to remove problems and
inadequacies of the Standard Model like left- right symmetry, grand unified
theories, technicolor, compositeness, supersymmetry (SUSY), supergravity,
Kaluza- Klein models and superstrings. Which one is favored by nature,
experiments will decide, but as far as the mathmatical beauty and conceptual
completeness is concerned supersymmetry seems the best.

It has been more than 25 years now since Wess and Zumino [18] initiated
a worldwide debate whether there exists a symmetry between bosons and
fermions i.e. is nature supersymmetric? Even after 25 years we have not been
able to answer this question confidently. But all the theoretical research done so
far has revealed the inner beauty and completeness of this theory in such a way
that it has made people believe that SUSY must be the symmetry of the nature
(even though it is broken at 100 GeV or so).

In this dissertation we have tried to highlight the main ideas of this
beautiful theory, and is arranged as follows.

Ch. 1 discusses Standard Model, one of the most beautiful, predictively
rich and experimentally varified models given ever. Though neither it includes
gravity, nor it addresssmany questions of aesthetics yet it is an empirically
perfect model for the energies up to the order of 100 GeV where gravity is
ignorable.

Ch. 2 deals with Grand Unified Theories (GUTs) : another step towards
unification. SU(S) has been considered as an example with predictions of GUTs
including Proton decay.

Ch. 3 gives the basic concepts and provides a mathmatical framework for
SUSY theories. It might have proved baneficial to discuss/ include the ideas of
compositeness and technicolor but since these are not related directly to the core
concepts of SUSY so we have just defined them. In Ch. 4 chapter the minimal
extension of Standard Model, the MSSM, has been considered in a bit detail.

Last two chapters give brief idea of super GUTs and supergravity theories
and finally we give comments and conclusions.



Chapter 1

STANDARD MODEL

1.1 Introduction

Because of its success in describing low energy phenomenology in the number of funda-
mental fields the SU(3)¢ x SU(2) x U(1)y Theory of strong and electroweak interactions
with corresponding gauge couplings g.,g amd g, based on the principle of non-abelian
gauge invariance, has become the standard formulation. Where SU(2); x U(1)y is the
theory of electroweak model[l] and SU(3)c embodies QCD i.e. the current theory of
strong interactions. Here QCD is considered to be an unbroken symmetry of the nature.

In the minimal version, there are two complex Higgs scalars that transform as doublets
of SU(2)., and singlets of SU(3)c. One of the neutral scalars develops a non vanishing
vacuum expectation value V, so that the SU(3)c x SU(2), x U(1)y theory is sponta-
neously broken at a mass scale of O(M,,) into SU(3), x U(1)g. Where U(1)q is the
abelian gauge group of electromagnetism. The three remaining Hermitian Higgs fields
are absorbed in a redefinition of gauge bosons providing them with the third degree of
freedom. As a consequence, three gauge bosons (W=, Z) become massive, while the pho-
ton (A,) is the gauge boson of the unbroken U(1)g group and remains massless. A chiral
symmetry forbidding fermion masses is broken at the same time allowing the fermions

to become massive. This is a particular example of Higgs Mechanism.



1.2 SM Lagrangian

The SM applies equally to all three families of left-handed doublets of fermions known

experimentally:

v, Yy vy
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€ T
L H L L
u c {
) ?
8 b
L L L

with the same set of gauge bosons v , W* and Z, interacting with each family with the
same coupling strengths. The right-handed matter fields are SU(2) singlets and they do

not participate in weak interactions.

The SM Lagrangian can be written as|[2]

L= =W W = B B - 1Ga, G
+Iy*D,L + Ry DR+ Ly"D, L,
+(Dug)"(D*)"V(0)
~giLoR + g;LoR + H.C.

1 — a
+§g3¢;’7“)\‘;k1/)§Gu (1.1)

Where the terms in the first line correspond to W+ | Z% | ~ and gluon K.E. terms and
self interactions. That of the second line to fermionic K.E. and their interactions with
W=, Z% and ~.Terms of third line correspond to masses and couplings of W=, Z° ~ and
Higgs bosons. Whereas terms of fourth line correspond to quark-gluon coupling.

Here the covariant derivatives are defined as



1 -
D, = i~ g.TuGy — 597 Wi

1
D, = (iau—ig’YB“>

and field strength tensors as

W = 8W:—ig [W,, W,
G, = 8,G%—0,G% — g, fuGLG!
B. = 8,B,—9,B,

and (W, B) are SU(2) and U(1) gauge fields respectively.

W,
w2 |.B.
Wy
and (¢, ¢T) are scalars with
¢* Do\ ek ™
o= o' =(¢,9):¢ =ine =
¢ —¢~

le. ¢ <q~5> is Higgs (conjugate) doublet.
After spontaneous symmetry breaking (SSB) the Lagrangian is[3]
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where
!
0, =tan! g
g
1s the weak angle;
e = gsinb,

1s positron electric charge;
A = Beosb,, + W3sin 6,

is massless field;

~ WhEaw?
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and

= —Bsin 8, + W3cosl,,

are massive charged and neutral weak boson field respectively. T+ , T~ are weak isospin

raising and lowering operators. The vectors and axial couplings are

g, = t31,(i) — 2¢;sin? 0,

gl = t3,(d)

where t37(¢) is the weak isospin of the fermion i and q; is charge of ¥, in units of e. The



second term in the L represents the charged current weak interaction. e.g., the coupling

of a W to an electron and a neutrino is[4]

W -0

for q> < M, this goes to four-Fermi interaction and comparison gives [4]

Gr_ &
V2~ 8MZ

In SM lagrangian H is the physical neutral Higgs scalar which is the only remaining
part of ¢ after SSB. The mass of Higgs is not predicted by the SM , though experimental

limits are given on My.
We take e( or o ), sinf,, and G as input parameter of this model . The prediction

of W and Z bosons in terms of these parameters, calculated at tree level [5]

M}, = 78.3GeV

M3 = 89.0GeV

whereas the experimental values are[36]

Mz = 91.1867GeV

The removal of discrepancy requires the need to include the radiative corrections. If we

denote the radiative corrections by A, then|6, 7]



My, = STBE00003 o yr 8304276V

sin 0,(1 — A,)2

and

74.562 £ 0.0006
My = +GeV = 93.8 £ 2.2GeV

sin260,,(1 — A\, )2

Thus predicted values are in excellent agreement with the experimental values.
In SM, the CP violation is incorporated by a single observable phase in CKM matrix

which relates the quark mass eigen states to weak eigenstates.

1.3 Fermion masses and mixing

Due to the chiral nature of weak interactions, bare mass terms for fermions violate gauge
invariance and therefore can not be included in the Lagrangian in order to preserve
the renormalizability. Therefore we use the scalar Higgs doublet ¢ to break the gauge
symmetries for this purpose and write the gauge invariant Yukawa couplings as[5]

S (Tnddiht, + T,

Ry q
)

. @ wpihi; + Zibiée’lzjhfj) + h.c. (1.3)

And subsequent to spontaneous breakdown of gauge symmetry ,these lead to mass terms
for fermions. These mass matrices mix the weak eigenstates of different generations and

give rise to mixing angles like the Cabibbo angle.

1.4 Successes and inadequacies of SM

The high energy experiments performed in the recent years have proved that SM works
with remarkable accuracy. A number of observables measured at the per mil’e level can

be successfully fitted in terms of the most relevant parameters of SM i.e. my, s (m,) and

7



mpy. The presence of a few ~ 2 o deviations is what is to be expected on the statistical
grounds. The electroweak data and the SM predicted values obtained from global fit
are listed in the table [2], where a remarkable agreement between experiment and theory
holds from very good to excellent. But despite all the marvelous achievements of SM
up to energies of 100 GeV, there are certain reasons for which SM is thought to be an

inadequate model.

1.4.1 Questions and more questions.

i) In SM there are at least 61 particles. (Three generations, each containing 2 leptons
and two flavors of tricolored quarks, i.e. 24 fundamental fermion, then their antiparticles,
the 12 gauge bosons and one Higgs scalar) can all these really be fundamental?

ii) There are at least 19 arbitrary parameters that are not predicted by the model
(nine masses of quarks and charged leptons, three gauge couplings, represented by , four
parameters of CKM matrix, the QCD parameters, and the Higgs potential parameters
scalar self coupling A and vacuum expectation value v). This number rises to 26 if

neutrinos have mass and there is mixing among the leptons, too.

iii> There is no apparent reason {except ¢p violation> for the existence of 3 (or more?)
generations of quarks and leptons that are almost identical except for their masses.

iv) The SM does not explain why quarks and leptons are so similar in their weak-
interaction properties, both occurring in weak isopin doublets.

v) Why the quarks and leptons have charges in such a way that electrons charge
-e 1s equal and opposite to that of the quarks in the proton to at least one part in
102!, If it were otherwise, astronomical sized clumps of matter would mainly interact
electrostatically rather than gravitationally? Nor is it clear that why the total charge

within each generation vanishes i.e. why

3(Qu+Qa)+Qc +Qv =0



which is essential to cancel the SU(2)xU(1) triangular anomaly.

vi) What is the nature of Higgs bosons and the origin of electro-weak symmetry
breaking which is not even experimentally established yet?

vii) The origin of Fermion masses which are much smaller than the scale of electroweak
symmetry breaking e.g. m,, 4 ~ 107°A,, ; where A,, is the electroweak scale.

viii) Another deficiency of SM is the lack of any physical meaning of the U(1) gener-
ator.

ix) What is the origin of parity violation in low energy physics?

1.5 Beyond the Standard Model

From the above discussion it is clear that SM is not complete. Since Higgs is not found
yet, there is a possibility of presence of some new physics, what type of physics, SM Higgs,
Higgs plus SUSY or new strong forces and Higgs compositeness, this is what experiments
will decide. There are also, a few, rare processes that will, if observed, can give hints for
new physics which are Neutrino mass, proton decay and neutron-antineutron oscillations

and neutrino oscillations. The simplest yet extremely profound example of new physics

will e the diccovary of non.2ars nAUHNG mase.



Chapter 2

GRAND UNIFIED THEORIES

The SM is not really a unifying theory at all, because there are three different gauge
interactions, each with its own coupling strength. Thus it is logical to look for a higher
symmetry which unifies all three couplings and possibly can answer some of the unan-

swered questions of SM.

2.1 Possible choices of Grand Unified Group

The properties which a Grand Unified Group G must possess can be listed as below:

i) As SU(3), SU(2) and U(1) has 2,1,1 diagonal generators, G must have rank )4.

i) G must have complex representation to incorporate parity violation i.e. 7 = n*
(e.g. in SU(3) 3 = 3* # 3).

iii) G should have a single gauge coupling. Thus it should be either a simple group
or product of identical simple groups.

iv) Representation of G should accommodate all the known Fermions.

v) It must be free of anomalies in order to be a renormalizable theory.

First attempt in this direction was made by Pati and Salam[11], who unified quarks
and leptons within the group SU(2), x SU(2)r x SU(4)¢ by extending the color gauge

group to include the leptons. They explained the quantization of electric charge, although
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they had three coupling constants gor, gor and g, since there was no natural left-right

symmetry in their model.

The simplest symmetry group which can incorporate the idea of Grand Unification
is the SU(5) which corresponds to a rotation in an internal space of 5 dimensions. This
model was suggested by Georgi and Glashow [12]. It not only explains the quantization
of electric charge but also the unification of all coupling constants let us briefly discuss

SU(5).

2.2 SU(5)

In minimal Grand Unification based on SU(5), 15 left handed fermions can be accom-

modated in 5 and 10 representations of SU(5) with SU(3) and SU(2) content.

I3 0
(3, 1) +(1,2) + (3,2), (‘3‘,1) +(1,1)
ds (rem)  (uidi) oy e
where for first generation

d§ 0 uz uy uy dy

d% 0 U'i U9 d2

5 = dg : 10 = 0 Us d3

e 0 et

Ve \ 0

provided
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There are 24 gauge bosons associated with SU(5). Under SU(3) x SU(2)x U(1) they

decompose as follows

{24} =(8.1,0) + (1,3.0) + (1,1,0) + (3,2,5/3) + (3*,2,-5/3)
gluons, W;and B fields i,?,X,Y fields

Thus corresponding to 24 generators of SU(5) there are 12 new bosons X,Y XY plus

12 gauge bosons off SM. These new bosons must have charges

1

4
Qx=§1, Qy=§;

X and Y bosons are sometimes called Leptoquarks and they can mediate Proton or

Neutron decay. For electroweak theory we defined the Weinberg angle as

Ju()
dsu(2)

tanf, =

gl
g

now if we take the generator corresponding to Y and take its eigen value for et and then

compareing it with SU(2) x U(1) case we have [5]

3 ,
\/gQSU(s) =g

but

gsuE) =9

12



which implies

3

t 911) = —

an 3

which in turn gives
3
.2
911) = —
sin 5

This prediction is much larger than experimental value. But when radiative corrections
are made we get sin”f,, =0.2140.01 which is in remarkable agreement with experiment.
In order to break the SU(5) group down to SU(3), x U(1).m two Higgs multiplets are
introduced. One belonging to 24-dimensional irreducible representation ¢(24) and the
other to 5-dimensional representation H(5) .The stages of symmetry breakdown are given

by
SU(5) — SU(3), x SU(2)p x U(1)y — SU(3)e X U(1)em

the first stage is achieved by < ¢ ># 0 and the second stage by < H ># 0. This
spontaneous symmetry breaking gives masses to the gauge bosons.

The predicted value [14] for XY boson masses is > 10°GeV thus SU(5) symmetry
breaks first at about 10'® GeV and then at about 10? GeV energy scale.

2.3 SO(10)

The other groups that contain the SU(3) color subgroup and that have complex repre-
sentations are SU(6) and SO(10) both having rank 5.

SU(6) must be excluded since although it has a 15 dimensional representation, its
SU(3) x SU(2) decomposition does not match with our 15 members of one family.

SO(10) contains SU(5) as sub-group and decomposition is

16=10+5+1

13



where 10 and 5 are precisely the same as discussed earlier in case of SU(5). For extra
SU(5) singlet we can postulate the existence ofvg.In the minimal SU(5) model neutrino
has to be massless so that the observed parity violation seems natural but why it is so is
not obvious.

It is perhaps more natural to assume that G possesses L-R symmetry and the parity
violation we observe at low energies is the result of symmetry breaking. Thus G must
contain SU(2);, x SU(2)g subgroup as in SO(10) and not just SU(2)r as in SU(5).
Thus SO(10) seems more appropriate.

For breaking of SO(10) nature could choose any one of the following ways.

SO(10) — SU(5) — SU(3) x SU(2) x U(1)
SU(4) x SU(2) x U(1)

A nice feature of SO(10) symmetry is that fermions all appear in a single representation
and it is automatically free of anomalies. Thus it also satisfies all the requirements for a

grand unified theory.

2.4 Hierarchy problem in GUTs

The Hierarchy problem of Grand Unified Theories can be divided into two parts

i) Why M,, < Mgyr in the first place ( more precisely why M,, < Mpanck )7

i1) If this Hierarchy is present , how to maintain it ?

The second problem arises due to the fact that there is no known symmetry which
can protect scalar masses from quadratic divergences as is the case with fermions and
bosons!.

It is expected that Higgs scalars of electroweak and guts will have masses of the order

of M, and Mgyt respectively. But if we take a look on the quantum corrected Higgs

fermion masses are protected by the chiral symmetry and bosons from the gauge symmetries.
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mass in SM, it is given by

2
g
M2 = M (tree) + 167T2A2 + (2.1)

where g is the weak gauge coupling constant and A is the cut-off. Thus due to the
presence of cut-off A, the quantum corrections to M, are quadratically divergent. Note
that within the context of SM there is no Hierarchy problem because the quadratic
divergences can be absorbed in redefinition of M, in renormalization process. But in
case of GUTs , where Higgs couple to the heavy GUT vector bosons, quantum corrections
will include terms with A ~ M. thus parameters of the theory are to be adjusted in

such a way that cancellation at a precision of the order of

% ~ 107%

M}
is achieved and this requires a ”fine tuning”. But now another problem arises that every
next order in perturbation will destroy this fine tuning so every time we will have to
retune our parameters which is a quite unnatural procedure that is why this problem is

also called a problem of naturalness. However we will see that SUSY, quite beautifully .

deals with this problem. In fact this problem of Hierarchy was one of the basic motivations

for SUSY.

2.5 Predictions of GUT's

2.5.1 Proton decay

The most spectacular prediction of SU(5) is that proton, which we have hitherto regarded
as stable, should decay, Via the exchange of virtual superheavy gauge bosons X and Y.

In SU(5) the most dominant decay of proton is expected to be

P —etn®
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Some possible mechanisms for the decay are.

. u e
e
X iy -
_ p u d
¢ ) a ;

These graphs give rise to proton decay with a life time in minimal version of SU(5)

T (P — e+7r0) ~ 2 x 1024 years

The error includes the uncertainties arising from the measured value of Azz! and other

model-dependent factors. Whereas the present experiment limit for this decay is
T (P — c”r?ro) > 9 x 10*years

which rules out minimal SU(5) as a grand unification gauge group.

2.5.2 Unification of running coupling constants

The grand unification implies that at very high energies all Standard Model couplings

became equal i.e.

/

9s =9 =41

For SU(3)¢, SU(2), and U(1)y respectively. As the coupling constants are scale-dependent
quantities, therefore these coupling constants must change with energy and if the hypoth-
esis of Grand Unification is to hold they must be equal to SU(5) coupling at some mass
M,. We will call M, the Grand unification scale. For y < M, , SU(5) breaks down
to SU(3)¢c x SU(2), x U(1l)y and separate couplings behave differently. For scale de-

pendence of coupling constants, from Renormalization Group Equations[10], we have

1t is QCD scale parameter which roughly denotes the scale at which the chromodynamic interactions
become strong. The radiative corrections depend on «; which in turn depends on Agrz.

16



or with a change of variable ,

4n
which gives
21
It « 4m
Integration gives
1 b
o it +c

where for Q=pu , c:m , thus finally to the one loop approximation the solution to

RGE gives[10, 5]

L1 b (@
Q) + 7T1 g(ﬂ) (2.2)

where

4
bg = 11—§Ng
22 4 1
by = — — =N, —=N
? 3 397 67
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4 1
bl = —gNg - 1_ONH

where N, is number of families or generations of fermions and Ny is the number of
Higgs doublets in the electroweak sector. Now if we use the known values of strong and
electromagnetic coupling along with the above evolution equation, we get the variation

of effective coupling constants with energy scale as is shown in Fig 1.

2.5.3 Prediction for magnetic monopoles.

In grand unified theories the electric charge operator is one of the generators of the
symmetry and all particles must have the same unit of charge (or fraction of it, as in case
of quarks), thus incorporating charge quantization naturally . In 1929 Dirac predicted

the existence of magnetic-monopoles with magnetic charge

he
Em =N—.
2e
In 1974 t' Hooft [9] and Polyakov showed that magnetic monopoles occur in GUTs

naturally with mass ~ My.

2.5.4 Baryon asymmetry

Guts can provide natural explanation of the baryon asymmetry in the universe. In the

universe,
—~ ~107°

Ty

where, 7' s have typical energies ~ 107% eV. That is energy of the universe is matter
dominant. As GUTs can lead to B through processes such as proton decay. If CP
violation is incorporated in GUT's it can be used to calculate %3 which comes out to be

quite close to the observed value .
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by = —=N,— —Njg

3 10

where N, is number of families or generations of fermions and Ny is the number of
Higgs doublets in the electroweak sector. Now if we use the known values of strong and
electromagnetic coupling along with the above evolution equation, we get the variation

of effective coupling constants with energy scale as is shown in Fig 1.

2.5.3 Prediction for magnetic monopoles.

In grand unified theories the electric charge operator is one of the generators of the
symmetry and all particles must have the same unit of charge (or fraction of it, as in case
of quarks), thus incorporating charge quantization naturally . In 1929 Dirac predicted

the existence of magnetic-monopoles with magnetic charge

In 1974 t' Hooft [9] and Polyakov showed that magnetic monopoles occur in GUTs

naturally with mass ~ Mx.

2.5.4 Baryon asymmetry

Guts can provide natural explanation of the baryon asymmetry in the universe. In the

universe,

n

—E ~107°

Ny
where, v s have typical energies =~ 107* eV. That is energy of the universe is matter
dominant. As GUTs can lead to B through processes such as proton decay. If CP

violation is incorporated in GUTs it can be used to calculate 2 which comes out to be
Y

quite close to the observed value .
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2.6 Successes and problems of GUTs

GUTs have explained many questions unanswered by SM and have also made some
aesthetically attractive predictions.

1) The idea of unification of 3 forces is very attractive and aesthetically appealing.

ii) It explains charge quantization.

ii1) It explains fractional charges of quarks.

iv) sin?f,, is correctly predicted.

v) Very small masses of neutrino occur automatically.

vi) B may explain cosmological baryon asymmetry i.e. in universe matter dominates
antimatter (although SU(5) is excluded on these bases).

vii) Grand unified theories predict superheavy magnetic-monopoles, that may have
been created during phase transitions in early universe and may still exist as relics of
those transitions today.

But

1) It does not explain the number of generations of fermions or fermion masses and
mixing angles.

ii) Higgs sector is even more arbitrary and complicated than before . larger the group
G, more arbitrary is the Higgs sector, greater the number of free parameters and smaller
the predictive power.

i11) The Hierarchy of mass scale is another fundamental problem
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Chapter 3

WHAT IS NEXT:
SUPERSYMMETRY - AN
INTRODUCTION

Ultimate unification of all particles and all interactions is the eternal dream of theoretical
physicists. The unified gauge theories has taken us a step closer to this goal but they
are clearly incomplete. They do not include gravity. They do not explain the number
of generations of Fermion masses and mixing angles. In GUTs, Higgs sector is even
more arbitrary and complicated than before. And most important and fundamental, the
Hierarchy of mass scale.

There has been some attempts to overcome these difficulties. Three most popular
solutions proposed are

- TECHNICOLOR

- COMPOSITENESS

- SUPERSYMMETRY

According to TECHNICOLOR theory Higgs particles are composite of the so-
called techni-fermions F. Here a new confining, asymptotically free, non-Abelian gauge

interaction, technicolor, is introduced between these technifermions with a mass scale

20



Ar = v <1 TeV. And according to COMPOSITE MODELS all quarks and ley- .-
are composite particles and their hypothetical constituents are usually referred -
“Preons”.

Apart from the fact that both these theories introduce new problems and cumu.:- .-
rions, they still solve some of the existing problems and the core ideas are very prom:si:.
ones, which has been incorporated into a variety of other attempts to nnifv pa:-o -
physics beyond the standard model.

The third one, supersymmetry or SUSY, is a symmetry between bosons ana = -
Among all the above proposals SUSY proves to be the most powerful and rerr - -
equipped to solve some of the existing problem and paving new ways. Thus we

study this symmetry in a bit more detail.

3.1 Motivation for Supersymmetry:

To see why symmetry between bosons and fermions may be of interest to the sruc. -
elementary particle physics we point out that there is no apparent symmetry tha- -u:
control the divergences associated with scalar field masses. The scalar masses have -~
sources for their quadratic divergences, one from a scalar loop which comes with a pusi-:--
sign and another from a fermion loop with negative sign'. It is then suggestive tha -
rhere was a symmetry that related the couplings and masses of fermions and bosons ...
divergences from scalar field masses could be eliminated . Supersymmetry provides <. .
an opportunity. Thus helping to solve the gauge Hierarchy problem. Another motivar: -
to consider SUSY is that it is the most general symmetry of the S-matrix.

One of the most interesting features of SUSY is that the local version of SUSY
SUGRA, is a good candidate for a possible unification of all elementary infteracs: :.-
including Gravity. SUSY appears very naturally in superstring theory which is

current best hope for a ”theory of every thing”. (However this argument only rec:.::--

LA well known result of fermi statistics
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SUSY at or below Planck scale, not necessarily at the weak scale).Also there are some

small hints that SUSY might be true. The most dramatic of these is the unification of

couplings.

3.2 SUSY at low energies

There are atleast two reasons for thinking that SUSY might have something to do with
nature and that it might be broken at a scale =~ M,
- Hierarchy problem: For a theory which contains both massive scalars and

fermions in addition to the Higgs field h, we have one loop contribution to M2 is

_ 9%

it (A2 + m?g) + log Divergences (3.1)

2
2 2 9F (A2 2
Mh ~ Mho+m (A +mF)
Now if gg = g we are left with a well behaved contribution to the Higgs boson mass
provided the fermion and scalar masses are not too different.

)
2 2 gr 2 2
MhNMho+I7T_2(mf_m)

One can roughly assume that the cancellation is unnatural if the mass spliting is larger
than about a TeV. (because M, < 1 TeV.

- SUSY is intrinsic to string theory:. It is known that there are a vast array of
supersymmetric solutions to string theory. A general feature of these solutions is that if
SUSY is unbroken in some lowest order the theory remains supersymmetric to all orders.
So if string theory describes nature. low energy SUSY is almost certainly a prediction .
Since SUSY is by hypothesis relevant to fixing the weak scale of 250 GeV. One expects
that difference in masses should not differ by more than 250 GeV. This argument is
confirmed in models all of which produce some detectable spartners that are light.

Note that it is not a problem with SUSY ideas that SUSY partners have not yet been

found. Most of them are expected to have masses of order M,, and could not have been
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detected yet. Those that could have been detected, such as gluino, are allowed to be

heavy enough to have been unobservable so far.

3.3 SUSY algebra

Symmetries are of fundamental importance in the description of physical phenomena. A
fundamental symmetry of particle physics , which has been firmly established both the-
oretically and experimentally, is that of Poincare’ group, i.e of rotations and translations
in four dimensional Minkowski space.

Besides this fundamental symmetry there are other so-called internal symmetries
(such as the symmetry of SU(3) flavor group ) which has also been firmly established .

Several attempts has been made to unify the space-time symmetry of Poincare’ group
with some internal group. But the so called ” no-go” theorem of Coleman and Mandula
[16]does not allow this.

Coleman Mandula theorem states that if one makes the plausible assumption of local-
ity, causality, positivity of energy, finiteness of number of particles and one more technical

assumption then the most general Lie algebra of symmetries of S-matrix has the form

[PM’BI] =0

[M;w»Bl] = 0 (32)

Where P, is the energy momentum operator, M, is the Lorentz rotation generator and

B, are a finite number of Lorentz scalar operators. B; constitutes a Lie algebra

[B,. By =iCE By (3.3)

Here CF_ are the structure constants of this Lie algebra of the compact internal symmetry

group.

23



In the simplest words it is not possible to mix space-time symmetry and some internal
symmetry except in a trivial way which essentially, does not result in a genuine unification
of one group with the other.

The generators of the Poincare’ group satisfy well known commutation relations of
the field operators which quantize these fields. It was realized by Wess and Zumino [1§]
that if one allows also the anticommutation relations of generators of a symmetry, called
the supersymmetry, then the unification of the space-time symmetry of the Poincare'
group with this internal symmetry can be achieved.

The formal proof of this discovery was established by Haag, Lopuszanski and Sohnius[35].
The HLS theorem states that if we generalize the Poincare algebra to a super algebra
or graded lie algebra then the maximal symmetry of the S-matrix is the direct product
of an internal symmetry with the space-time symmetry. The graded Lie algebra in this

case is given by the relations

{ei.e5} = {@5.@5} =0
{Q5.Q%) = 25°0% P
@1y = {@3.B}=0
{Q3.B) = i57°Q5
Q5 M~ = i (o)F Q%
[B.Br] = iC¥ By (3.4)

where Q4 ,Q ; are the 2-component Weyl spinors (and indices A, B=1,2) which are
added to Poincaré algebra to extend it to the superalgebra. S;* # are the Hermitian
representation matrices of the representation. containing the charges. Q% and B, are the
generators of the internal symmetry group.

The only allowed extension is the possible appearance of so-called central charges in

the anticommutator of two undotted spinors. Thus instead of the first relation of (1) one
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can have,

{5, @5} = can2™ (3.3)
where
€AB = (1) :)1 = (EAB)vf,.Zaﬁ = — b
also
[Zaf’, Bl} =0

which is the reason why the quantities Z are called central charges.
Consider two pairs of creation and annihilation operators (b,b") and (f,f') for bosons

and fermions satisfying the following relations,

[b,b*] =1

{rry=1
The Hamiltonian for this system can in general be written as
H=Wbb+W;f1f
Now if we define a fermionic operator,
Q="0b"+fTb

then we have
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—+

Q] =1
{@ry = v

Thus if fT]0) and b' | 0) represent fermionic and b®sonic states respectively, Q will take

bosons to fermions and vice-versa. also

Q. H] = (wy —wy) Q

So for equal energies for bosonic and fermionic states H is supersymmetric. Also for this

case

Q.Q1="2m.

w

Thus algebra of Q, Q' and H closes under anticommutation.
For more than one f and b there must be equal number of them otherwise last two
equations can not be satisfied together. This is a simple illustration that SUSY requires
equal number of fermionic and bosonic degrees of freedom and that anticommutators of

@ and QT involve Hamiltonian which is an important implication for physics.

3.3.1 Generators of SUSY

It is quite clear that symmetry we are looking for, must connect bosons and fermions
which in turn implies that the generators themselves carry half-integer spin i.e. are
fermionic in nature. Whereas the generators of Lorentz group or that of the gauge group
are all bosonic in nature.

As is clear from HLS theorem, for presentation of SUSY we do not change the struc-
ture of space time but we add structure to it. We start with usual four coordinates
z# = (t,z,y,2) and add four odd dimensions Q.(a = 1,....,4). These odd dimen-

sions are fermionic and anticommute. Thus SUSY is formulated as a generalization of
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space-time symmetry to include spinorial generators which obey specific anticommuta-

tion relations e.g. the Lie algebra of SU(2) is given by eqn.
{Ji J]] = iﬁiijk

whereJ; are generators of SU(2) under a rotation dcribed by the angles v (0,.05.653).

The field components mix according to
U e T w
then for two infinitesimal rotations §; ¥ and 65V it is easy to check that
[61.69) = iei]-inIQJz-Jk

in the same way if we take a supersymmetric Lagrangian like

]— 7

L:%@Af+§@£f+iﬁwaw (3.6)

Where L is effectively invariant under transformations which mix the scalar fields A, B

and spinor field ¥, then we can see that in this case
[61,62] = (2637"€1) Pu.

The similarity of this equation with operator equation for rotations suggests that what-
ever the generators of SUSY are, the generalized algebra which they obey will be expected
to involve the generator P, of Poincaré group i.e. SUSY transformations do not form a
group but are just an extension of the Poincaré group. Using the example of SU(2) again

we introduce generators of SUSY transformations 7, in analogy with

oV =10,J,¥
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wheref),, are parameter of transformation. we have
8 (Field) = ie Q4 (Field)

here € are the parameters of transformation and 4 are the generators. Thev are .-

Grassmann quantities. in Weyl 2-spinor repfsentation we write,

n” Qo
EA = >QA = _

Mg Qg-

Since spinors are intrinsically complex objects so Q' is also a symmetryv gene:a-
@, Q" are Fermionic operators they carry spin angular-momentum 1/2. it again o= -
clear that SUSY must be a space time symmetry and LHS theorem implies tha- -:-

generators must satisfy an algebra of anticommutation and commutation relarion .-

Schematic form

{QauQﬁ} - {Qa-a@ﬁ} =0
{Qa,@@.} = 20§B.P"
[Qa)Pu] = =0

Here we have chosen the simplest choice of SUSY generators which is a 2-compore:-

Weyl spinor Q and its conjugate Q where «, 3, @, take values 1,2.

3.3.2 Superspace

A finite supertranslation or SUSY transformation is defined as

S(x,0,0) = cH09Qa+0a-Q% ~X1P,) -
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wheref® and 6, and are anticommuting Grassmann variables and are 2-component

spinors obeying

{0.0y = {00} = {6.6} =0

Then it is clear that objects or fields on which tif8se SUSY transformations act must
also depend onfl and . This leads to the introduction of superfield and superspace. The

superspace is defined as
7 = (ac",@o‘,?w)
with four fermionic and four bosonic coordinates. For ordinary translations we have
GICP) iY'P) _ (X +Y).P. [P.,P,)] =0

If we try to combine two supertranslations we have

ei(a.p+§Q+T£—Q)u ei(z.p+aQ+e_c§) — 6i(z’.p+6'Q+m)

Using Hausdorff formula and the relations of graded Lie algebra we and then comparing

left and right hand sides we have

= (a+x)“+i<§?§—00€)
9; = §a+6a

0, = & +0,

This shows that translation is space-time coordinates involve translation in fermionic

coordinates which implies that we can not take
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oo+
In analogy with
4
.0
=g
So we define Q, as
Qe = 8%& — ok, 0% D,
rases (9 (e P 1T
Q = 0. —i0%h* 0,

These definitions are compatible with our graded Lie algebra i.e. they satisfv
{Qa,éﬁ_} = 2045 Pletc.

3.3.3 Superfields

The concept of superfields was first proposed by Salam and Strethdee [37]. Thev u: -

posed that a function of superspace coordinates can generate the components i ~:-

supermultiplets.

Consider a function of superspace

d=d(x,0,0)

A Tailor expansion in the variables 6 and 0 is given by
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®(x,0,0) = Clx)+0¢(x)+0x(x)+00M (z) + 60N (z) + 000V, (2)

b ?

+000X () + 000+ () + 6600D (z) (3.8)

HereC(x), M(z), N(2), ¢ (), X (x), X (z), ¥ (x), V. #), d(z)are component fields with 16
bosonic and 16 fermionic degrees of freedom.i.e. a superfield in 8-dimensions is equivelent
to 16 -component set of ordinary fields in 4-dimensions.

The covariant derivatives' for the superfields are defined as

Dy = 8A+iail~3538u

Sl
N
I

—8; — 05" 0, (3.9)

These operators obey the following relations?

{p.p} = {D,D}= (3.10)
}

0
{(D,Q} = {E,@ :{‘B,Q}:{D,Q}zo (3.11)

and

D = D°=0 (3.12)

{D4, D} = 204:P, (3.13)

These covariant derivatives can be used to define the following projection operators,

li.e. the operators which are invariant under supersymmetric transformations
2For the detailed mathmatical proofs of these relations see]]
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1

= 3.14
T = —gD D (3.14)
r = ——pp (3.15)
- 160
1 A_2
- 3.16
mr = g5DD Da (3.16)

Now it is clear from the above definitions that

Dr, = 0 asD’ =0 (3.17)
Dr. = 0 asD® =0 (3.18)
Thus if we define superfields
6. =T, ® (3.19)
Then
Dé. = 0 (3.20)
Do, = 0 (3.21)

and the fields obeying these constraintsare called left handed and right handed chiral

superfields respectively.i.e

D,

Ij
o

Ddog

Il
o
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There is another kind of superfields, vector superfields which obey the reality condition

l.e.
®(x,0,0) = d'(z,0,0)

Now applying this condition on the expansion of fighd ®(x.0,0) we get

C(z) = C(z),¢(x) =x(z), M(z) =N"(z)
Vil@) = Vi (z) A(z) =9 (x),D(z) = D" (v)

Hence a vector superfield obeying these conditions has a general expansion of the form.

V(z,0,0) = C(x)+0¢(x)+0¢(x)+00M (x) +00M* (x) + 05#0V,, (z)
+000X () + 000X (x) + 0000D (x) (3.22)

Where C(z),V, (z) and D (z) are real fields. M (z), D (z) and C(z) are scalar fields.
A(z), ¢ (x) are spinor fields and V, (z) is a vector field.

The supersymmetric field strength for an arbitrary vector superfield V(z,8,6’)
is defined by the components

Wy

(DD) DAV (2,0, (3.23)

Wy

I
I

(DD)D ,V (x,0,) (3.24)

where W4 and W ; are examples of spinor superfields.

A general non-abelian SUSY gauge transformation acting on V can be described by
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o 1, .
egV e igA egvezg/\

where A(z,0,0) is a chiral superfield and g is the gauge coupling.
-

3.4 Wess Zumino model

The simplest way to display the supersymmetry is to write a Lagrangian containing

fermion and bosons fields i.e

1 1 1—
L=2 (8,4 +3 (0.8 Z\ym‘ﬁ’\p (3.25)
where A and B are scalar fields and ¥ is a Majorana spinor field. This is simplified
Wess Zumino Model[]. This Lagrangian is effectively invariant (up to a total derivative)

under transformations which mix the scalar and spinor fields. These supersymmetric

transformations are

0A = €V
§B = ey’
0 = —iv*e(0,A) +v*v°c (0,.B)

8O = ity (8,4) — Tv°7* (9,B)

Now let 61 0o be relevant field variations corresponding to the Majorana spinors ¢; and

€9 respectively then

[61.6] A = € (6,T) — € (627)
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= —20€v"¢; (0, A)
(61,62 A = 267"e1P,A
(6160 B = 2", P,B
(61.0:] ¥ = 2676V — Ey,e1v' Y P Y

<«
where to get the last term we have made use of Fierz rearrangement formula al..v

with other properties of Majorana spinors. Note that first term on R.H.S. of ec.
representing a translation as in case of first two eqns. and this is what was experreac @ -

second term is undesirable. To eliminate this term we enlarge the definition of ~¥ &: :

include fields F and D and take
60 = —iv*e (0,A) + V7% (8,B) — eF — ir°eD

where F and D now have additional relations

§F = iey*(9,1)

6D = —ey’+*(8,¥)

It is very easy to check that [8; 6,] A and [6; 65]B are unchanged with these transforr.-

tions and
[(‘51’62] ¥ = 2?2’)’“61 /PM\I/

with

[(51,62] F = 2?2’)’”61P“F
[(51’(52} D = 2627“61PMD
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We have got the desired result but now the problem is that Lagrangian is no .ormg=: -
persymmetric, unless we add term %F2 + %DQ in the Lagrangian so that ¢ ( %@/ - 3
is cancelled by 6 (%F2 + %D2) and the Lagrangian is invariant apart from a *-a. @ -

gence. Thus finally we have the action

1

5= E 0,47 + 5 0,8 Bin, Tw 4 1F7 + 51)2: .
which is invariant under supersymmetric transformations
6A = €U
§B = ey’
OF = iey" (9,7)
6D = —&y°+*(9,9)
60 = —iv*e(0,A) + v+ (0,B) — €F — iveD

§U = ey (9, A) — ey’ (0,B) — eF — ey’ D VT

Note that the number of bosonic degrees of freedom (i.e.4) is equal to the nurie:

fermionic degrees of freedom and this is the characteristic of SUSY theories.

3.5 Non-renormalization of SUSY theories

One of the most beautiful aspects of these theories is that here the quadratic diverger.--
contributing from fermionic and bosonic loops are cancelled leaving a finite theorv. C..r-

sider a supersymmetric lagrangian,

L= LO + Lint

where
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1
Lo = 5 @A)+ (0,B) 1T, 0w

4
+%F2 + %DQ +mDA+mFB (3.28)
[ 4
Lii = —L AT +i-L BT T +
V2 V2
g 2- 2
~_(A*> B®)D + gvV2ABF 3.29

now Euler-Lagrange equations for F and D are

F = —mB - gV2AB
= —mA—g (A2 + B2)

substituting back into the Lagrangian we get

1 2 1 9 lo—. 1 5/ 5 5 1
L = L@A7 4208 S T Lt (424 BY) — LT

[/ J— gm _ 9
— T ATV + i BU~ U — gvV/2AB? — 2= A(AY B?) — g2 A?B?
VA R VAR

2

g, 12— 2
—Z (A" B

4( )

here the generating functional for field A,\B and ¥ of Wess-Zumino Lagrangian is

Zilg o) = e Zolg, Jon, 7]

|
L

Zolg, J,n,7] = Nel & [I@ApE—v)I()diadty-4 [ 9(a)Ap(a—b)g(b)d*adtb—i [75n]
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Using this we can determine the Greens functions for each of the interaction terms in
Wess Zumino model and then can calculate one point functions for fields A,B and .The

one point functions of A in lowest orders of perturbation [calculated in detail in] are

y B

%/[_Z'AK«;] - [1533] dsﬂ Q - | ; ‘\\

m . .
—'g““\/é- (1A K] [—iAp,;) ds

_gm
V2

[_iAKasl [—iAK43]d3 A A

thus we have got the Feynman diagrams and multiplicative factors so applying Feynman

rules [20}we can write

g d'p d*p , d*p
S A i P e
(0 | Lin| A s [Tr p— m "y 3m o —

d4 d4 d4
= i‘*””@/_z_p—z—mfz—}%—?)m/“?_*p? (3.30)
\/§ p my P mp P miy

In a supersymmetric theory as all the masses are exactly equal all the three contributions
add up to zero. Thus although each diagram is separately quadratically divergent but the
divergence from fermion loop exactly cancels the sum of divergences from boson loops.
It should be noted that for cancellation to occur M, should be equal to mass m that
enters via the trilinear scalar interactions and if My is different from bosonic masses the
above expression is logarithmically divergent. And this allows m; to be different from

mpeg.

3.6 Supersymmetry breaking

By definition, in the limit of exact supersymmetry fermions and bosons are degenerate

In mass. But there is no Selectron with .511 MeV mass or Smuon with mass .106
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MeV. In fact not any superpartner have been discovered yet. Thus in order to relate
supersymmetry with real world we must consider models where SUSY is broken. This
breaking could be either explicit or spontaneous.

We will preferably consider the spontaneous breaking of the symmetry which has
already been successfully applied for the breaking of gauge symmetries. But unfortu-
nately it is not easy to break SUSY spontaneously%ecause

i) If we introduce a spin 0 field with negative mass-squared, its fermionic spartner

would have an imaginary mass .

ii) From SUSY algebra we have

{Qm st} ’Ygﬁ = 2’)'2:5]3“

which for 4 =0 and o = 3 gives

> {0 QL) =8R =8H

a

and hence

O1H[0)=31Qu [0 + 3 |4 1 0)f
that is the vacuum energy is positive definite. So if SUSY breaks spontaneously E,, )0
this might give rise to a trouble some cosmological constant.

iii) In the spontaneous breaking of SUSY (in the absence of gravity),one would expect
spin 1/2, massless Goldstino (G) which is excluded experimentally. This G would then
be the LSP. However in SUGRA models the G is absorbed by the gravition (g3/o ) which
then acquires a mass.

In case of explicit SUSY breaking (by adding extra terms in the Lagrangian which
will break supersymmetry of the Lagrangian) the arbitrariness in the theory increases,

thereby reducing its predictive power. In addition we would inevitably lose the non-
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renormalization theorems and even worse ,any attempt to include gravity via local SUSY

would be prohibited.
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Chapter 4

MSSM: THE SUPERSYMMETRIC
EXTENSION OF THE
STANDARD MODEL

4.1 Introduction

At present there exists a successful (at low energies) model of electro- weak and strong
interactions - the Standard model. Let us consider the possibility that new physics
beyond may be related to supersymmetry i.e. we take the supersymmetric extension of
the SM, The Minimal Supersymmetric Standard Model. The MSSM respects the same
gauge symmetries as does the SM. For its supersymmetric extension we must double the
entire particle spectrum, placing the observed particles in superfields with new postulated
superpartners. The superfield of MSSM are shown in the table (3). Note that each quark
has two scalar partners., one corresponding to each quark chirality. The leptons are
contained in the doublet superfield which in itself contains the left handed fermions and
their scalar partners sleptons. The gauge fields all obtain Majorana fermion partners in
a SUSY model.

. Here it should be noted that the subscript of ”t” and "R” in squarks and s leptons
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does not correspond to chirality. (because they are scalars) but they are written jus -
recognize that they belong to left handed quarks and leptons or to right handed .:.--
Also we see that gauge fields all obtain Majorana Fermion partners in a SUSY moa-.

There is one "unusual” thing here, that is the presence of two Higgs doublets v
then obtain 2 more Higgs doublets in SUSY extension. The reason is that if we <+ ..
with the one Higgs doublet as is the case in SM T will acquire a SUSY partner wr. -
a doublet of Majorana fermion fields, (Higgsinos) which contribute to the triarg.= .- .
gauge an amolies. As all other anomalies of the model are cancelled among the: <= - -
it follows that contribution from fermionic partner of the Higgs doublet remains ::.
celled. To make the theory sensible, these anomalies must be cancelled somekh.
simplest way is to add a second Higgs doublet with precisely the opposite quanr- -
bers. In this way MSSM is infect SUSY extension of extended Standard Model w:- - -
Higgs doublets

In a SUSY model this second Higgs doublet will also have fermionic partner. :
contributions of the fermionic partners of the two Higgs doublets to gauge anoma=- -
precisely cancel each other leaving an anomaly free theory.

Later we will see that two Higgs doublets are also required in order to give
the up and down quarks masses in a SUSY theory. From the table it is easv =, 77 -
that matter fermions fields satisfy the condition for anomaly cancellation. No-e - .-
superfields contain ”auxiliary fields” also. These are fields with no K.E. terms = -+

Lagrangian

4.2 MSSM Lagrangian

While constructing the MSSM Lagrangian the important points to be taken care of. apa:-
from those necessary to construct SM Lagrangian (e.g. gauge invariance), are
1) we have to include the superpartners of all the particles in SM with two Higg-

doublets.
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i1) SUSY invariance.

iii) Inclusion of ”Soft” breaking terms for SUSY breaking.

iv) An exact discrete R-parity.

It is seen that if we construct a theory based on all the points except the last one,
we get baryon-and lepton-number violating terms in the Lagrangian, which lead to unac-
ceptable physics (fast rates of nucleon decay). It is%elieved that these terms can only be
avoided in a satisfactory way by introducing some additional symmetries. There are var-
ious possibilities one can imagine. However, in MSSM we use the unbroken R-symmetry.
The R parity of a state is related to its spin S, baryon number B and lepton number L

according to
R — (__1)2J+SB+L
v = .

All SM particles are R-even and their superpartners are R-odd. More will be said on

R-parity later. In general the complete MSSM Lagrangian will have a form

L = Lsysy + Lsorr

here first part is supersymmetric and the second part explicitly breaks SUSY. The term
Lsysy is obtained by ”supersymmetrizing” the ordinary SM Lagrangian.

We will consider leptons only. gauge invariant coupling of ®and V is
Lo = ®Te?®

This gives rise to the gauge coupling of the matter fields after we expand the exponential

and note:

1
Ly =30+ gd'VO + 5ch>TV2<1>.
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Thus we can write!

A A
+

Ly = [a {L v b gwenh

_ A A -
/\T /A A /\T /A A
+/d46’ Q e29V+9'B Q +u 629V+g By

+ / d*0 @T (2V 9B f) LA eevioB g, (4.1)
1 4 aayx/a avxs' ] £2 (n )
Lguage = Z /d 0 [W Wa + 1774 Wa:| 6 (9) + h.c. (42)
and
Lt 2gV+Ag’g 4 Ot 2gV+;'g p
LHiggs = /d49 [Hl ¢ I_{l + 1{2 € Hy (4.3)
+W 8% (§) + W 62 ()]
here

g, g — gauge coupling constants for SU(2) and U(1).
Wo— SU(2) field strength = —1DDe %V D eV

W/,— U(1) field strength = —1DD, DV’

here F,,, and B, are contained in W, and W,.

4.3 The Superpotential

The Superpotential of the theory is defined by
A A AN AA A A
W=Ww LvR’quvdsHlsHQ
To guarantee a renormalizable theory the Superpotential must be

N
i) A function of 2, fz, Q, 2A1, (Ai, [Ailand ﬁ20nly and not there conjugate fields.

1See Table .3 for superfields which occur in the lagrangian below.
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ii) At maximum a cubic in the superfields an analytic Function (derivative interactions

are not allowed).

In MSSM the most general Superpotential takes on the form[21]

W = eypHil+ ey [ALH\{Ejﬁ 4 HIQ7d + )\uﬁ;@f@]
T3 Pliii’ﬁ + /\aii@jﬂ + Astidd (4.4)

here ¢;; is an anti-symmetric tensor defined as

0 1
-1 0

also Ay,A9, A3 are all Yukawa coupling constants Here we have suppressed the generational
indices on these constants. g is a mass parameters required in order to get a physically
acceptable theory. Because if theory has an additional symmetry (Peccei-Quinn symme-
try) with g = 0 then spontaneous breakdown of this symmetry leads to an experimentally
unacceptable Weinberg-Wilczek axion.

We now have all the Lgygy terms. It can be checked that this Lagrangian is invariant
under SU(3)— ,SU(2)- U(1)-gauge and R symmetries apart its invariance under super-
symmetric transformations. Now in the Lagrangian we will expand the chiral and vector
superfields in terms of the component fields. e.g. the chiral field 2\} (:L‘, Q,E)Will have the

following expansion,

2(3:,9’5) _ v, (33,9,_9-)
ZA(:C,Q,E)

= L(z)+i00" § d,L(z) - iae@aﬂaﬂ (z)

V2010 () + %ee%ﬂaﬂ:(?) () + 00F, (2) (4.5)
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where

A 7, (z) v® (z) 17 ()
L= _ L (z) = Py (z) =
l(z) () ) fi (x)

For vector superfield, we use for convenience, Wess-Zumino gauge. In this gauge the

o~
expansions of SU(2) and U(1) gauge superfields are given as]

Ve (2,0,0) = —00" GV (z)+i060)" (z) — 006X ()

1
+50000D° (z). (4.6)

Here A\ () is two component (Weyl) gaugino field, Vi (x) is the superpartner of the
SM gauge boson field and D is the auxiliary field. If we expand all the fields in the
Lagrangian we get several component fields. These are given in table (4).

Now with these expansions we obtain the off-shell Lagrangian i.e. the one containing
the auxiliary fields. To get on- shell Lagrangian we will remove these fields through the

Euler-Lagrange equations

oL oL
0d 9(0,9)
where ® is any Minkowski field. As formally auxiliary fields are defined as fields having

no kinetic terms, so for these fields ,these Euler-Lagrange equations reduce to

oL

55 =0

Applying these simplified eqns. to various auxiliary fields we get the auxiliary fields in
A A AA A

terms of [, }\{ Q, {\c, d, Hiand H, .Thus substituting these results back in the Lagrangian

we can get rid of auxiliary fields and can finally obtain the on-shell MSSM Lagrangian.

Note that at this stage all of our particles are massless.
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In analogy of SM we define

A, (z) = cos GwV;l + sin 0y,
V;Zﬂ () = cos@wvs — sin Gw\/;‘/,
o~
and

Vi) TV (x)

W () = S

and using similar relations for spin 1/2 gauginos involving A* and X’ we can define A , (x),

A, (z), and A* (z).The co-variant derivative now takes the form

. .Y
D, = (r)”—l—ngaV:—FngVM
g

g e o
= 0O, + ﬁTJrW: + \/ﬁT W, +ieQA,
g 3 .
+COS 0 ['] Qsm@w] Z, (4.7)

where () , the charge operator (with eigenvalues in units of elementary charge ”e”) is

given interms of hyper charge Y and third. component of isospin,
Y
Q=T+ —
2
and
T = T"+T°

here D, operates on SU(2) singlet. It is preferable to express the Lagrangian in four-

component spinors notation for theoretical calculations. It can be easily achieved by
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introducing the Majorana spinors, having particle-antiparticle fields in one spinor. After
having MSSM Lagrangian in 4-component spinor notation it is easy to compare it with
SM Lagrangian. One can easily make the following observations ,

1) It contains the correct kinetic terms for the bosons and fermions of the theory.

ii) It contains the SM-interaction terms for SM particles and in addition terms between
SM and SUSY particles and SUSY particles alone®

iii) We observe that for the Wino and charged Hhiggsino-fields, their charged conju-
gated fields also appear in the Lagrangian. This was not the case with SM. This new
effect has the strange consequence that the theory will contain fermion-number violating

vertices and propagators.

4.4 SUSY breaking

Upto now we have constructed a supersymmetric theory which is unbroken and particles
and their partners are massless. It is typically assumed that SUSY breaking occurs at
some high scale, say Mpjanr and perhaps results from some complete theory including
gravity too. We have already discussed the spontaneous symmetry breaking of SUSY
theories. Here for MSSM we look for the explicit symmetry breaking.

4.4.1 Explicit symmetry breaking of MSSM lagrangian

It has been shown that quadratic divergences still cancel even if, in the Lagrangian, we
introduce [23]

i) Scalar mass terms - m? |¢;|”

1) Gaugino mass terms - c;¢;

iii) Bilinear terms - B;;¢;¢;+ h.c.

iv) Trilinear scalar interactions - A;x¢id;¢r+ h.c.

Where it should be kept in mind that

i) Linear terms are only gauge invariant for gauge singlet fields.
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i) We are not allowed to introduce additional masses to chiral fields

This will lead to soft breaking of SUSY. Thus the supersymmetric partners of the
model are given masses by including explicit ”soft” mass terms. Thus we have arbitrary
masses of sparticles but this introduces a large number of unknown parameters (more
than 50). It is true that remarkably, even with all these arbitrary parameters, the theory
is still able to make some definitive predictions. ’f‘his is of course, because the gauge
interactions of the SUSY particles are completely fixed. But still there is a need for a
theory in which SUSY soft breaking terms arise in order to reduce the parameter space.

Now we will examine how the electroweak symmetry is broken in this model.

4.4.2 Electro-Weak symmetry breaking

In SUSY-theories one has two kinds of potential Superpotential and scalar potentials
one can find, from Superpotential both the scalar potential and the Yukawa interactions
of the fermions with the scalars. However consider the scalar potential, which has its
analogy in the scalar potential, which has its analogy in SM. Contributions to the MSSM
scalar potential arise from

1) auxiliary field F and D.

ii) and soft scalar mass terms. i.e.

Vumssm = Vo + Ve + Vsorr.

But for symmetry breaking we will only consider the Higgs sector of the theory. The
symmetry is broken when the neutral components of the Higgs doublets get vacuum
expectation values,

and the negative minimum of the potential can be written as [22]

Vin = -t Kmf - mg) + (mf + m%) C’os2ﬁ]
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where tan = % and as v; ,v3 >0s00< G < %

One important point here is that in the supersymmetric limit, where all (Soft) mass
parameters of Lgopr are set equal to zero, no electroweak breaking is possible. Thus
gauge symmetry breaking is connected to the breaking of SUSY.

Before the symmetry was broken, the two complex Higgs doublets had 8 degrees of
freedom. Three of these were absorbed to give the«’V and Z gauge bosons their masses,
leaving 5 physical degrees of freedom. Now we have two charged Higgs bosons H*, three
neutral Higgs bosons (one of which is CP-odd and 2 CP-even) A, h and H.

If we define two parameters

(i) tanf = ‘—‘2

(i1) M4 = mass of pseudoscalar Higgs boson

Then masses of remaining Higgs can be calculated in terms of these parameters by

convention h is taken to be the lighter of the neutral Higgs bosons. Then
M}Qﬁt - M&/ + MA

It was predicted that is lighter than Z boson and so must be observable at LEP IL
But since corrections to M2 receive contributions from loops with both top-quark and
s-quarks. If SUSY holds these contribution would cancel but as supersymmetry is broken

we have to take the radiative corrections into account[22].

The MSSM prediction for W and Z mass is

MEi, = Zg° (Uf + v%)

(6 +97) (v +3)

[N NN

2
ME =

which are consistent with the results from the SM and are used to fix v? + v3.

It is an important feature of MSSM that for large M, the Higgs sector looks like that
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of the SM.

The leptons and quarks masses arise from Yukawa couplings of the theory, as in case
of SM.

Charginos, the physical mass states )Z‘f, are linear combination formed from W< and
h* i.e. winos and Higgsinos. By convention M;li is the lighter chargino. Similarly mixing

of b, W* and neutral Higgsinos ﬁ?, Eg give physical‘gtates neutralino ¥9 . By convention
M;(l) < M;(z) < M;(’g < M;g

The lightest neutralino, X9 is usually assumed to be the LSP.

4.5 R-parity

As we already discussed that a supersymmetric and gauge invariant Lagrangian may
contain terms contributing to L and B voilation which can lead to proton decay. If the
SUSY partners of the SM particles have masses on TeV scale, then these interactions are
severely restricted by experimental measurements. To L. and B interactions problem we
have several approaches

1) Simply make the couplings small enough to provide experimental limits. This is
allowed experimentally but does not look nice.

ii) To make either L interaction couplings or B couplings zero. This will forbid proton
decay. But there is not much theoretical motivation for this approach.

What we actually want is that these terms be forbidden by certain symmetry so that
they will not reappear at higher orders of perturbation theory. And this is what R-parity
does. As we have already defined

R, = (_1)2J+SB+L

The R-parity conservation has profound experimental consequences.
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1) SUSY partners can only be pair produced from SM particles.

ii) Production of SUSY particle will be followed by a cascade decay, until the lightest
SUSY particle (LSP) is produced.

i) When R-~parity is conserved, LSP is absolutely stable.

iv) LSP behaves much like neutrino, when is tried to be detected as it is stable and
neutral, and interacts weakly, only be exchange of 3 heavy virtual SUSY particle.

Thus with R-Parity conservation.

1) The generic signature of SUSY is events with missing energy

ii) LSP can be a candidate for dark matter

If R-parity is not conserved there will not be a stable LSP, and

LSP — ordinary particles

in this case missing energy will no longer be a signature for SUSY.
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Chapter 5

SUPERSYMMETRIC GRAND
UNIFIED THEORIES

A major motivation for introducing SUSY was the Hierarchy problem of GUTs. In SU(5)

Grand Unified Theory spin 1/2 matter fields fit neatly into ¥( 5) and x(10) representa-
tions. While gauge bosons A, lie in (24) adjoint representation of SU(5).

Grand unified SU(5) is spontaneously broken to SU(3)¢ x SU(2);, x U(1)y at a scale
M, =~ 10" GeV by a superheavy Higgs field ¢(24). And then electroweak breaking occurs
at scale M,, = 102GeV through Higgs multiplet H(5) .

To make this model supersymmetric we have to form chiral and gauge multiplets by
introducing SUSY partners for all of the above particles. In addition we must include a

second Higgs multiplet H'(5) to give masses to both u-type and d-type quarks.
W(¢') = a;i¢' + aijﬁbzd’j + aijk¢i¢j¢k

where@® are complex scalar bosons of gauge group.
The condition for SUSY to be broken at tree level, is that we require

(i) 5 =0

(#3)-Hermitian and antihermitian ¢ commute.
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If both these requirements have simultaneous solutions then SUSY is unbroken at
tree level otherwise, SUSY is spontaneously broken. Now what we want is to break
SU(5) to SU(3)ex SU(2)rx U(1l)y in such a way that supersymmetry remains unbroken
(so that it is unbroken till weak scale). It is very simple to achieve this If we take
the fields ¢’consisting of a single traceless complex matrix transforming in the adjoint

[ .4
representation of SU(5) then in this case the most general choice of W is [24].

1 | 1
W = 5MTr(A?) + g/\TrAf‘

The condition &
(i) A=0
(i) A = Mdiag (1,1,1,1, —4)
(i) A = 2Mdiag (1,1,1, 32, 3)

corresponding to SU(5), SU(4) x U(1) and SU(3) xSU(2) x U(1l) unbroken gauge

= ( gives three solution of A

symmetries. As these solutions arise from condition for unbroken SUSY, they all have zero
energy at tree level and so are completely degenerate!. This is illustrated schematically
in Fig.

The 3rd solution is of our interest for which ¢ has a non zero v.e.v.

(0]¢|0) = diag (2M,2M,2M,—3M, —3M)

which contributes to masses of H and H' Higgs fields. The relevant part of the Superpo-

tential is [8]

1A typical SUSY theory has many ground states, which are characterized by the expectation values
of some scalar fields. All these states must be degenerate. This is similar to Spontaneous Symmetry
Breaking but with SSB the degenerate vacua all have the same physics, while here they are physically
inequivalent. They are not related to one another directly by any symmetry. The scalar fields which
label these vacua are known as ”moduli”
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W = NH'(¢+m)H

= N(@m+m)HjysH125+ N(=3m+m')HsHas

It is the later term which is responsible for SM elec®®oweak breaking at scale My . In order

that the doublet components (4,5) have mass 0(My/) rather than 0(My), we require,

M =3M

where M and M’ are of 0(My ). This implies a fine tuning, which is just the HIER-
ARCHY Problem of GUTs again. Thus it seems that we have not achieved anything
but infect we do because of the lack of renormalization of the mass parameters in SUSY
theory. the fine tuning is required just once in the original Lagrangian and not in each

order of perturbation theory separately. Now let us very briefly review SGUT models.

5.1 SUSY GUTs

In a standard SUSY GUT model we assume that SU(3), x SU(2),xU(1)s gauge cou-
pling constants are unified at a high scale M, =~ 10'°GeV [21]

/5
301 (M:) = 92(M:) = ga(Mz) = g,
The gaugino masses are also assumed to unify.
AMZ(MZ) = Mmyy/2

At lower energies the gaugino masses have scale in the same way as the corresponding

coupling constant i.e.
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M (Mw) _ 97 (Mw)

mi/2 9z
which implies,
~
5 2
Ml = g tan 0wM2
a 1
M. il
2 sin? 0, a, 3

This shows that the gluino mass (Mj3) is always heaviest of the gaugino masses. This is
one of the major predictions of SUSY GUT.
Another important feature of SUSY GUTs is that it can possibly give answer of the

question that |,

why p?<0 ?

which is the basic requirement for SSB at electroweak scale in SM. In a typical SUSY
GUT model it can be seen that the lightest Higgs boson mass becomes negative around
the electroweak scale [25] provided Mrop is large. In fact, this mechanism only work for
Mrop ~ 175 GeV.

And it is also worth noting that SUSY GUTS can naturally accommodate a large top
quark mass [21]

MTOP ~ (200G€V) tanﬁ

and for tan8 ~ 2 , Myop is close to experimental value.
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5.2 Unification of running coupling constants

In a gauge theory, coupling constants scale with energy according to the (-function.
Hence having measured a coupling constant at one energy scale, its value at any other
energy can be predicted.

At one loop ~

11 b (9
ai(uz)_ai(ﬂ2)+2ﬂlg(#>

Asin SUSY GUTs we have more particles in low energy sector, the evaluation of coupling

constants is changed from those we had in case of non- supersymmetric model (ch.2).Now

they are given by

3
b = —2N, ~ Ny

1
by = 6—2N,+ Ny

b3 - 9'—2Ng

Where N, is number of generations (up to scale ~ M ) and Ny is number of Higgs
doublets, which is 2 in case of SUSY GUT. fig. shows a low energy SUSY model. From
experimentally measured values at Z-pole. The SUSY thresholds are taken to be at
1 TeV. We see that coupling constants meet at a scale ~ 101®GeV . [26,27,28] with
a; ~ 1/25.

The observation that the measured coupling constants tend to meet at a point when
evaluated to high energy,assuming the §-function of a low energy SUSY model has led
to wide spread acceptance of a standard SUSY GUT model.
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Chapter 6 o

SUPERGRAVITY

Up to now we have taken SUSY as a global symmetry. What about its local version?

That is when the parameters of SUSY transformation become a function of space time.
e =e(x).

From our previous experience in field theory we know that invariance under any local
symmetry requires the introduction of new vector fields in the theory. Consider the free

spin 3/2 massless Rarita- Schwinger eqn.[29] :

" ey, 0,0, = 0. (6.1)

This equation is gauge invariant and therefore requires local transformation:

8, (z) = e (). (6.2)

It is an interesting fact that the above eqn. and the coupling of the spin 3/2 field to a
conserved current can be derived, conversly, by the requirement of local supersymmetry
on a supersymmetric lagrangian.

Thus requirement, for local SUSY leads to the introduction of a Majorana field with
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spin 3/2 . But this introduction of sopin 3/2 field gives rise to another variation in the

lagrangian as an additional term:

8L = ikey, 0", (6.3)

and this new term can be cancelled only if we inglide the gravitational coupling i.e. to
keep the theory supersymmetric we require a massless spin 2 field which can be identified
with the Graviton field . Thus giving a hint of unification of gravity with other three
forces of nature[30, 31, 32], a step towards theory of everything (TOE) ? !

From dimensional arguments it follows that the coupling constant k must have dimen-
sions of M1 i.e, local supersymmetry requires a dimensional coupling, a fact contrary to

our observation so far. On dimensional grounds we can define

k = /87Gx

where Gy is the gravitational constant with dim. M 2. k is used as the universal gauge
coupling associated with local supersymmetry.

It 1s very difficult to construct globally supersymmetric models where SUSY is sponta-
neously broken at the weak scale. This problem can be solved if we assume that SUSY is
broken in a "hidden” sector at a scale u > M,,. It is also assumed that this sector then
interacts with 7observable” sector only gravitationally . This led to the development
of supergravity GUT models..Because of the assumed symmetries, various soft SUSY
breaking parameters become related and thus the parametrization of low energy effective
Lagrangian needs just a few parameters.

The other assumptions made in SUSY GUTs are,

i) All scalars have same mass, m,.

'In a non technical way this can be understood by noting the fact that when spin of a particle is
changed , not only its internal properties are changed but also the space-time properties.ie. particle
is ”displaced” also. And this is exactly what a gauge transformation in the theory of gravity does.
Consequently a super-gauge theory can only be formulated if it is combined with gravity i.e supergravity.
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i1) All gauginos have same mass, my /9

iii)All trilinear couplings are same, Ag.

These assumptions have the tremendous advantage that the SUSY sector is fully
described by just 5 input parameters at the GUT scale [33,34] that are,

m, , myjg, , Ag , tan 3, sign (u)

First 3 parameters are specified at the unificatioin scale, while tan (3 is taken at the
scale Mz. This set of assumption is often called the "superstring inspired 7 SUSY GUT”
or mSUGRA ?or the constrained MSSM (CMSSM). Thus predictions for various SUSY
particle masses (as a function of m, , m;3) can be found for given values of Ag , tan g
and sign (u) . Actually these parameters completely determine all the sparticle masses
and couplings.

The mSUGRA model provides a consistent framework for SUSY phenomenology.
An interesting aspect of mSUGRA is that with R-parity invariance the lightest neutralino
is the LSP and thus a candidate for Cold dark matter (CDM) . Thus it also provides a
natural candidate for CDM.

In the mSUGRA scenario the resulting low energy spectrum tends to have the fol-
lowing properties.

1) the weak-scale gaugino mass parameters have the same ratio as that of the relevant

coupling
M1 : MQ:M3~a1:a2:a3

ii) The p parameter tends to be large i.e. || > My, implying that lightest neutralino
X} is primarily bino i.e. corresponds to B, and X9 and lightest chargino are wino i.e.
X, %Y correspond to W. 1t also implies that heavier neutralinos (X3.4) and chargino (%3)
are primarily Higgsino.

ii) If My > M/, the squarks and sleptons are nearly degenerate and heavier than

2minimal supergravity

60



)2(1),2 and Xi -

iii) If My < My, quarks are heavier than sleptons. These properties will be useful
while looking for the SUSY signature.

N = 1 supergravity leaves many questions unanswered including,

iv) Matter fields are chosen to fit phenomenology and are not a natural out-come of
the theory. ”

iii) Here not only problem of divergences rises again but is also more severe than
global SUSY or non-supersymmetric theories.

In order to find answers to these and many other questions it would be interesting to
go beyond N=1 SUSY.

The most interesting of these is the N=8 supergravity. Here every super-multiplet
should have all spin values from 0 to 2. In a more understandable way, the spin can
change from -2 to 42 in eight steps of one half unit. But there must be only one graviton
as in Einstein’s theory only one type of gravitational force is allowed and therefore we
can only have one N=8 supermultiplet ,thus not allowing any extension or addition

This single supermultiplet contains so many particles that all existing particles can
be taken care of. Thus this theory seems to have features of a theory of every thing
but there is a problem that it is a nonrenormalizable . We surely have to think of
something else and that ”something else” is to try all those theories in spaces with more
dimensions than our 4-dimensional space-time. This idea was first propsed by Kaluza
and was further elaborated by Klein. The 11 dimensional supergravity was found to be
much more symmetric and accommodating all the particles. Here 7 out of 11 dimensions
are assumed to be rolled up leaving 4 physical space-time dimensions. Could this be a
theory of every thing? Unfortunately ( or may be fortunately ) in this theory it is not
possible to have infinities cancelled in diagrams with more than 7 loops .

So, is there nothing more which supersymmetry, with all its beauty and completeness,
can do 7 the answer may lie in Superstrings.

Superstring theory , as a candidate theory of elementry particle physics at the Planck
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scale was first propsed in 1974. The 10- dimensional super Yang Mills theories emerge
as a limiting case of superstring theories.

It was seen that the massless closed-string ( which are bound states of open strings)
spectrum contain a massless gravitino field . The only way such a field can have consistent
couplings is if the theory has local supersymmetry for which gravitino is the gauge field.
This requires that the entire spectrum falls in to sugermultiplets, showing the presence of
SUSY as an underlying theory in superstrings. In fact the set of massless states consists
of a vector and a Majorana-Weyl spinor , which in a limiting case, is described by a
supersymmetric Yang Mills theory in 10-dimensions.. By dimensional reduction , one
obtains the N=4 Yang Mills theory in 4-dim. and representations are the same as that

of an 11-dimension Supergravity (SUGRA).
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Comments and Concdusion

In this dissertation, we have reviewed the basic theory of supersymmetry with a
special emphasis on supersymmetric Standard Model, supersymmetric grand
unified theory and supersymmetric gravity without going into extensive technical
detail. We have highlighted the cancellation of divergences , economisation of
SM parameters, R-parity phenomenological consequences, unification of gauge
couplings, etc. in the context of SUSY theories. We find that the SUSY theories
afford a most attractive and complete framework leading to superstrings which is
a strong candidate for theory of everything. The fate of SUSY will be finalized in
next few years with the run of LHC, Tevatron, LEP Il etc., which we are all
looking forward to, with our fingers crossed.
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Table -

1

Fields Component Fields | SU(3)c x SU(2), x U(1),
v 4
L (1,2,-1)
e
L
Matter e (1,1,-2)
(Fermions) qr= ( " ) (3,2,1/3)
i/,
Fields u (3,1,-4/3)
de (3.1,2/3)
HiggsField o (1,2,1)
Guage w (1,3,0)
Fields B (1,1,0)
(8,1,0)

64




Table - 2

Quantity Data(Aug97) SM Fit Pull_p-r)
Mo 91.1867(20)  91.1866 0.0
Toceny  2.4948(25)  2.4966 0.7
Thinb) 41.486(53)  41.467 0.4
Ry 20.775(27)  20.756 0.7
R, 0.2170(9)  0.2158 1.4
R, 0.1734(48)  0.1723 -0.1
Al 0.0171(10)  0.0162 0.9
A, 0.1411(64)  0.1470 0.9
Moy(Ge) 80.43(8)  80.375 0.7
Mip(cery  175.6(5.5)  173.1 0.4
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Table - 3

Super fields Comp. fields | Name U(3),SU(2),U(1)
Matter Fields
Uy,
o Quarks
~ o iy (2.0.0) d, 1
Q(z,08)= '\ i (3.2.5)
d, (2,0,0) i,
- Squarks
d,
i R.Handed
—~ 2y ~~ n u“
U (:5,9,0) = U (a:,@, 0) ~L Upquarks& (3*, 1, —é)
,U/C
g Upsquarks
- R.Handed
J(a:, 9,?) =d: (:v, 9,5) d~cL dquarks& (3*7 1, %)
- dsquarks
v
_ Leptons
A — vl (.’E, 9) 0) 61_1 g
L (32,9,9) = - 1(,2,-1)
(2.0, 9) L
) Sleptons
€L
. _ ¢ Antilept
R=¢ (z,0,) ‘L PP 11,2)
€% Antislepton
Gauge fields
w= Gauge
~ _ w3 bosons
ve (2.0,0) _ (1,3,0)
W
( w? Gaugino
Gauge
o _ B
%4 (w,@,ﬁ) 7 boson (1,1,0)
Gaugino
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Table - 3 (continued)

Super fields Comp. fields | Name U(3),SU(2),U(1)
Higgs fields
ot Higgs
H, (:c,(),?) = Iill (x,e,?) ?2 fields (1,2,+1)
H? (2,0,0) | &
5132 Higgsino
9 Higgs
H, (x,e,é) = ?21 (a:,e,?) qi‘; fields (1,2,-1)
H? (x,e,e) 39
o, Higgsino
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Table - 4

Name Symbol Spin  Charge
, L@t 1/2 0
L
Leptons er L®?
1/2 -1
ey, R® /
1/2 1
v, L ’ ’
SLeptons g, I?
- 0 -1
€5 R
- 0 1
w, QW 172 2/3
Quarks & Qo 1/2 /3
ug u 1/2 -2/3
s d /2 1/3
. @(2)1 0 2/3
d. 3(2)2
Squarks : @ 0 -1/3
Uug U
JCL p 0 -2/3
t 0 1/3
H; 0 0
H o0 -
Higgs Bsons
HG0 1
H2 0 0
\II}{I 1/2 0
v, 12 A

Higgsino
vl 1/2 1

v, 1/2 0
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Table - 4 (continued)

Name Symbol Spin  Charge
%% 1 -
Gauge bosons #
V. 1 -
_ A¢ 1/2 -
Gaugino
N 1/2 -
fu 0 0
Leptons £l 0 -1
f 0 1
fy 0 2/3
fu 0 -1/3
Quarks
fy 0 -2/3
fe, 0 1/3
fl 0 0
: £} 0 -1
Higgs
f] 0 1
g 0 0
D¢ 1 -
Gauge
D’ 1 -
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